We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Engineering

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What Is Cascade Control?

By C.H. Seman
Updated: May 23, 2024
Views: 24,154
Share

Cascade control refers to a process control strategy in which a process variable is controlled by manipulating the setpoint of a related process variable. In this particular strategy, the variable of interest is controlled by two control loops working in tandem. In the chemical process industries, a cascade control system is often used to reduce the effect of disturbances and upsets on the primary control objective.

A cascade control loop consists of a primary loop and a secondary loop. These loops might also be referred to as the outer loop and inner loop, respectively. The primary loop provides the secondary loop with a setpoint, or target, for a process related to the primary control objective. The primary loop is sometimes known as the master loop because it provides a setpoint that the secondary loop, or slave loop, must follow.

The primary purpose for using cascade control as a process control strategy is to allow the secondary loop to control disturbances before they can affect the primary control objective. For this control system to work effectively, the process dynamics of the secondary loop must be much faster than the dynamics of the primary loop. As a general rule, the process dynamics of the secondary loop must be at least four times faster than the process dynamics of the primary loop.

The most common application of cascade control for most chemical processes involves the use of a flow controller as the secondary loop. Most flow controllers have a very fast response time, making them suitable candidates for secondary loops. The primary loops tend to focus on variables such as temperature, level, potenz hydrogen (pH) levels or chemical composition.

Cascade control is not necessarily confined to systems based on only two control loops. Multiple cascade arrangements work in the same manner as a traditional cascade control loop but have more than two loops. For example, a chemical composition analyzer and control loop with a long dead time might rely on a temperature control loop to eliminate process upsets. The temperature control loop might then rely on an even faster controller, such as a flow controller.

There are several factors that are relevant in the development of cascade controllers for a given process. For example, a controls engineer would need to consider whether a chosen secondary loop had a strong effect on the primary loop of interest. The engineer would also need to know the process dynamics of the proposed secondary loop. Such factors could determine whether the proposed secondary loop is capable of absorbing process upsets and preventing them from affecting the primary loop.

Share
InfoBloom is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Discussion Comments
Share
https://www.infobloom.com/what-is-cascade-control.htm
Copy this link
InfoBloom, in your inbox

Our latest articles, guides, and more, delivered daily.

InfoBloom, in your inbox

Our latest articles, guides, and more, delivered daily.